Engineering Formula Sheet

Probability

Binomial Probability (order doesn’t matter)

\[P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!} \]

- \(P_k \) is binomial probability of \(k \) successes in \(n \) trials
- \(p \) = probability of a success
- \(q = 1 - p \) = probability of failure
- \(k \) = number of successes
- \(n \) = number of trials

Independent Events

\[P(A \text{ and } B \text{ and } C) = P_A P_B P_C \]

- \(P(A \text{ and } B \text{ and } C) \) = probability of independent events \(A \) and \(B \) and \(C \) occurring in sequence
- \(P_A \) = probability of event \(A \)

Mutually Exclusive Events

\[P(A \text{ or } B) = P_A + P_B \]

- \(P(A \text{ or } B) \) = probability of either mutually exclusive event \(A \) or \(B \) occurring in a trial
- \(P_A \) = probability of event \(A \)

Conditional Probability

\[P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)} \]

- \(P(A)\) = probability of event \(A \) occurring
- \(P(\sim A)\) = probability of event \(A \) not occurring
- \(P(D|\sim A)\) = probability of event \(D \) given event \(A \) did not occur

Statistics

Mean

\[\mu = \frac{\sum x_i}{n} \]

- \(\mu \) = mean value
- \(\sum x_i \) = sum of all data values (\(x_1, x_2, x_3, \ldots \))
- \(n \) = number of data values

Standard Deviation

\[\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}} \]

- \(\sigma \) = standard deviation
- \(x_i \) = individual data value (\(x_1, x_2, x_3, \ldots \))
- \(\mu \) = mean value
- \(n \) = number of data values

Frequency

\[f_x = \frac{n_x}{n} \]

- \(f_x \) = relative frequency of outcome \(x \)
- \(n_x \) = number of events with outcome \(x \)
- \(n \) = total number of events

\[P_x = \frac{f_x}{f_a} \]

- \(P_x \) = probability of outcome \(x \)
- \(f_a \) = frequency of all events

Mode

- Place data in ascending order.
- Mode = most frequently occurring value

- If two values occur at the maximum frequency the data set is **bimodal**.
- If three or more values occur at the maximum frequency the data set is **multi-modal**.

Median

- Place data in ascending order.
- If \(n \) is odd, median = central value
- If \(n \) is even, median = mean of two central values

\[\text{Range} = x_{\text{max}} - x_{\text{min}} \]

- \(x_{\text{max}} \) = maximum data value
- \(x_{\text{min}} \) = minimum data value

Range

\[\text{Range} = \text{xmax} - \text{xmin} \]

- \(\text{xmax} \) = maximum data value
- \(\text{xmin} \) = minimum data value

Condition

\[\mu = \frac{\sum x_i}{n} \]

- \(\mu \) = mean value
- \(\sum x_i \) = sum of all data values (\(x_1, x_2, x_3, \ldots \))
- \(n \) = number of data values

\[\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}} \]

- \(\sigma \) = standard deviation
- \(x_i \) = individual data value (\(x_1, x_2, x_3, \ldots \))
- \(\mu \) = mean value
- \(n \) = number of data values

\[\text{Range} = \text{xmax} - \text{xmin} \]

- \(\text{xmax} \) = maximum data value
- \(\text{xmin} \) = minimum data value

Mode

- Place data in ascending order.
- Mode = most frequently occurring value

- If two values occur at the maximum frequency the data set is **bimodal**.
- If three or more values occur at the maximum frequency the data set is **multi-modal**.

Median

- Place data in ascending order.
- If \(n \) is odd, median = central value
- If \(n \) is even, median = mean of two central values

\[\text{Range} = x_{\text{max}} - x_{\text{min}} \]

- \(x_{\text{max}} \) = maximum data value
- \(x_{\text{min}} \) = minimum data value

Independent Events

\[P(A \text{ and } B \text{ and } C) = P_A P_B P_C \]

- \(P(A \text{ and } B \text{ and } C) \) = probability of independent events \(A \) and \(B \) and \(C \) occurring in sequence
- \(P_A \) = probability of event \(A \)

Mutually Exclusive Events

\[P(A \text{ or } B) = P_A + P_B \]

- \(P(A \text{ or } B) \) = probability of either mutually exclusive event \(A \) or \(B \) occurring in a trial
- \(P_A \) = probability of event \(A \)

Conditional Probability

\[P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)} \]

- \(P(A)\) = probability of event \(A \) occurring
- \(P(\sim A)\) = probability of event \(A \) not occurring
- \(P(D|\sim A)\) = probability of event \(D \) given event \(A \) did not occur

- \(P(D|A)\) = probability of event \(D \) given event \(A \) occurred
Plane Geometry

Circle
- Circumference = $2\pi r$
- Area = πr^2

Parallelogram
- Area = bh

Triangle
- Area = $\frac{1}{2} \cdot bh$
- $a^2 = b^2 + c^2 - 2bc \cdot \cos\angle A$
- $b^2 = a^2 + c^2 - 2ac \cdot \cos\angle B$
- $c^2 = a^2 + b^2 - 2ab \cdot \cos\angle C$

Ellipse
- Area = $\pi a b$

Rectangle
- Perimeter = $2a + 2b$
- Area = ab

Regular Polygons
- Area = $n \cdot s \left(\frac{1}{2}f\right)$

Trapezoid
- Area = $\frac{1}{2}(a + b)h$

Solid Geometry

Cube
- Volume = s^3
- Surface Area = $6s^2$

Rectangular Prism
- Volume = wdh
- Surface Area = $2(wd + wh + dh)$

Right Circular Cone
- Volume = $\frac{\pi r^2 h}{3}$
- Surface Area = $\pi r \sqrt{r^2 + h^2}$

Pyramid
- Volume = $\frac{Ah}{3}$
- $A = \text{area of base}$

Sphere
- Volume = $\frac{4}{3} \pi r^3$
- Surface Area = $4 \pi r^2$

Cylinder
- Volume = $\pi r^2 h$
- Surface Area = $2 \pi rh + 2 \pi r^2$

Irregular Prism
- Volume = Ah
- $A = \text{area of base}$

Constants
- $g = 9.8 \text{ m/s}^2 = 32.27 \text{ ft/s}^2$
- $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg}\cdot\text{s}^2$
- $\pi = 3.14159$
Conversions

Mass
- 1 kg = 2.205 lbm
- 1 slug = 32.2 lbm
- 1 ton = 2000 lbm

Length
- 1 m = 3.28 ft
- 1 km = 0.621 mi
- 1 in. = 2.54 cm
- 1 mi = 5280 ft
- 1 yd = 3 ft

Area
- 1 acre = 4047 m²
- = 43,560 ft²
- = 0.00156 mi²

Force
- 1 N = 0.225 lbf
- 1 kip = 1000 lbf

Pressure
- 1 atm = 1.01325 bar
- = 33.9 ft H₂O
- = 29.92 in. Hg
- = 760 mm Hg
- = 101,325 Pa
- = 14.7 psi
- 1 psi = 2.31 ft of H₂O

Temperature
- TK = TC + 273
- TR = TF + 460
- TF = \(\frac{5}{9}T_C + 32\)

Volume
- 1 L = 0.264 gal
- = 0.0353 ft³
- = 33.8 fl oz
- 1 mL = 1 cm³ = 1 cc

Power
- 1 W = 3.412 Btu/h
- = 0.00134 hp
- = 14.34 cal/min
- = 0.7376 ft·lb/s

Energy
- 1 J = 0.239 cal
- = 9.48 x 10⁻⁴ Btu
- = 0.7376 ft·lb
- 1 kW h = 3,600,000 J

Time
- 1 d = 24 h
- 1 h = 60 min
- 1 min = 60 s
- 1 yr = 365 d

Units Equivalents
- 1 K = 1 °C
- = 1.8 °F
- = 1.8 °R

Angles
- π = 180°
- 1° = \(\frac{\pi}{180}\)

Defined Units
- 1 J = 1 N·m
- 1 N = 1 kg·m/s²
- 1 Pa = 1 N/m²
- 1 V = 1 W/A
- 1 W = 1 J/s
- 1 Ω = 1 V/A
- 1 Hz = 1 s⁻¹
- 1 F = 1 A·s/V
- 1 H = 1 V·s/V

SI Prefixes

<table>
<thead>
<tr>
<th>Power of 10</th>
<th>Prefix</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹</td>
<td>deci-</td>
<td>d</td>
</tr>
<tr>
<td>10⁻²</td>
<td>centi-</td>
<td>c</td>
</tr>
<tr>
<td>10⁻³</td>
<td>milli-</td>
<td>m</td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>micro-</td>
<td>µ</td>
</tr>
<tr>
<td>10⁻⁹</td>
<td>nano-</td>
<td>n</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>pico-</td>
<td>p</td>
</tr>
<tr>
<td>10⁻¹⁵</td>
<td>femto-</td>
<td>f</td>
</tr>
<tr>
<td>10⁻¹⁸</td>
<td>atto-</td>
<td>a</td>
</tr>
<tr>
<td>10⁻²¹</td>
<td>zepto-</td>
<td>z</td>
</tr>
<tr>
<td>10⁻²⁴</td>
<td>yocto-</td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power of 10</th>
<th>Prefix</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10¹</td>
<td>deca-</td>
<td>da</td>
</tr>
<tr>
<td>10²</td>
<td>hecto-</td>
<td>h</td>
</tr>
<tr>
<td>10³</td>
<td>kilo-</td>
<td>k</td>
</tr>
<tr>
<td>10⁶</td>
<td>Mega-</td>
<td>M</td>
</tr>
<tr>
<td>10⁹</td>
<td>Giga-</td>
<td>G</td>
</tr>
<tr>
<td>10¹²</td>
<td>Tera-</td>
<td>T</td>
</tr>
<tr>
<td>10¹⁵</td>
<td>Peta-</td>
<td>P</td>
</tr>
<tr>
<td>10¹⁸</td>
<td>Exa-</td>
<td>E</td>
</tr>
<tr>
<td>10²¹</td>
<td>Zetta-</td>
<td>Z</td>
</tr>
<tr>
<td>10²⁴</td>
<td>Yotta-</td>
<td>Y</td>
</tr>
</tbody>
</table>

Equations

Mass and Weight
- M = VD_m
- W = mg
- W = VD_w

V = volume
D_m = mass density
m = mass
D_w = weight density
g = acceleration due to gravity

Force
- F = ma
- F = force
- m = mass
- a = acceleration

Temperature
- T_K = T_C + 273
- T_R = T_F + 460
- T_F = \(\frac{5}{9}T_C + 32\)

Pressure
- 1 atm = 1.01325 bar
- = 33.9 ft H₂O
- = 29.92 in. Hg
- = 760 mm Hg
- = 101,325 Pa
- = 14.7 psi
- 1 psi = 2.31 ft of H₂O

Power
- 1 W = 3.412 Btu/h
- = 0.00134 hp
- = 14.34 cal/min
- = 0.7376 ft·lb/s

Energy
- 1 J = 0.239 cal
- = 9.48 x 10⁻⁴ Btu
- = 0.7376 ft·lb
- 1 kW h = 3,600,000 J

Time
- 1 d = 24 h
- 1 h = 60 min
- 1 min = 60 s
- 1 yr = 365 d

Equations of Static Equilibrium
- \(\Sigma F_x = 0\)
- \(\Sigma F_y = 0\)
- \(\Sigma M_p = 0\)

F_x = force in the x-direction
F_y = force in the y-direction
M_p = moment about point P
Section Properties

Moment of Inertia

\[I_{xx} = \frac{bh^3}{12} \]

\[I_{xx} = \text{moment of inertia of a rectangular section about x-x axis} \]

Complex Shapes Centroid

\[\bar{x} = \frac{\sum x_i A_i}{\sum A_i} \quad \text{and} \quad \bar{y} = \frac{\sum y_i A_i}{\sum A_i} \]

\(\bar{x} \) = x-distance to the centroid
\(\bar{y} \) = y-distance to the centroid
\(x_i \) = x distance to centroid of shape \(i \)
\(y_i \) = y distance to centroid of shape \(i \)
\(A_i \) = Area of shape \(i \)

Rectangle Centroid

\[\bar{x} = \frac{b}{2} \quad \text{and} \quad \bar{y} = \frac{h}{2} \]

Right Triangle Centroid

\[\bar{x} = \frac{b}{3} \quad \text{and} \quad \bar{y} = \frac{h}{3} \]

Semi-circle Centroid

\[\bar{x} = r \quad \text{and} \quad \bar{y} = \frac{4r}{3\pi} \]

\(\bar{x} \) = x-distance to the centroid
\(\bar{y} \) = y-distance to the centroid

Material Properties

Stress (axial)

\[\sigma = \frac{F}{A} \]

\(\sigma \) = stress
\(F \) = axial force
\(A \) = cross-sectional area

Strain (axial)

\[\epsilon = \frac{\delta}{L_0} \]

\(\epsilon \) = strain
\(L_0 \) = original length
\(\delta \) = change in length

Modulus of Elasticity

\[E = \frac{\sigma}{\epsilon} \]

\(E \) = modulus of elasticity
\(\sigma \) = stress
\(\epsilon \) = strain
\(A \) = cross-sectional area
\(F \) = axial force
\(\delta \) = deformation

Structural Analysis

Beam Formulas

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(R_A = R_B = \frac{P}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment</td>
<td>(M_{max} = \frac{PL}{4}) (at point of load)</td>
</tr>
<tr>
<td>Deflection</td>
<td>(\Delta_{max} = \frac{PL^2}{48EI}) (at point of load)</td>
</tr>
<tr>
<td>Reaction</td>
<td>(R_A = R_B = \frac{\omega L}{2})</td>
</tr>
<tr>
<td>Moment</td>
<td>(M_{max} = \frac{\omega L^2}{8}) (at center)</td>
</tr>
<tr>
<td>Deflection</td>
<td>(\Delta_{max} = \frac{\omega L^4}{16EI}) (at center)</td>
</tr>
<tr>
<td>Reaction</td>
<td>(R_A = R_B = \frac{Pb}{L}) and (R_B = \frac{Pa}{L})</td>
</tr>
<tr>
<td>Moment</td>
<td>(M_{max} = \frac{PbL}{2}) (between loads)</td>
</tr>
<tr>
<td>Deflection</td>
<td>(\Delta_{max} = \frac{Pb(\epsilon+2b)}{24E} \left(\frac{3(\epsilon+2b)}{a} \right)) (at center)</td>
</tr>
</tbody>
</table>

Reaction	\(R_A = \frac{Pb}{L} \) (at Point of Load)
Moment	\(M_{max} = \frac{Pb(\epsilon+2b)}{2} \) (at Point of Load)
Deflection	\(\Delta_{max} = \frac{Pb(\epsilon+2b)}{3} \) (when \(a > b \))

Deformation: Axial

\[\delta = \frac{FL_0}{AE} \]

\(\delta \) = deformation
\(F \) = axial force
\(L_0 \) = original length
\(A \) = cross-sectional area
\(E \) = modulus of elasticity

Truss Analysis

\[2J = M + R \]

\(J \) = number of joints
\(M \) = number of members
\(R \) = number of reaction forces
Aerospace Equations

Forces of Flight

\[F_D = \frac{2D}{Apv^2} \]
\[R_e = \frac{pvL}{\mu} \]
\[C_L = \frac{2L}{Apv^2} \]
\[M = \frac{Fd}{m} \]

\(C_D = \text{coefficient of drag} \)
\(C_L = \text{coefficient of lift} \)
\(L = \text{lift} \)
\(D = \text{drag} \)
\(A = \text{wing area} \)
\(\rho = \text{density} \)
\(R_e = \text{Reynolds number} \)
\(v = \text{velocity} \)
\(l = \text{length of fluid travel} \)
\(\mu = \text{fluid viscosity} \)
\(F = \text{force} \)
\(m = \text{mass} \)
\(g = \text{acceleration due to gravity} \)
\(M = \text{moment} \)
\(d = \text{moment arm (distance from datum perpendicular to } F) \)

Propulsion

\[F_N = W(v_j - v_o) \]
\[I = F_{ave}\Delta t \]
\[F_{net} = F_{avg} - F_g \]
\[a = v_i\Delta t \]

\(F_N = \text{net thrust} \)
\(W = \text{air mass flow} \)
\(v_o = \text{flight velocity} \)
\(v_j = \text{jet velocity} \)
\(I = \text{total impulse} \)
\(F_{ave} = \text{average thrust force} \)
\(\Delta t = \text{change in time (thrust duration)} \)
\(F_{net} = \text{net force} \)
\(F_{avg} = \text{average force} \)
\(F_g = \text{force of gravity} \)
\(v_f = \text{final velocity} \)
\(a = \text{acceleration} \)
\(\Delta t = \text{change in time (thrust duration)} \)

Energy

\[K = \frac{1}{2}mv^2 \]
\[U = -\frac{GMm}{R} \]
\[E = U + K = -\frac{GMm}{2R} \]

\(K = \text{kinetic energy} \)
\(m = \text{mass} \)
\(v = \text{velocity} \)
\(U = \text{gravitational potential energy} \)
\(G = \text{universal gravitation constant} \)
\(M = \text{mass of central body} \)
\(m = \text{mass of orbiting object} \)
\(R = \text{Distance center main body to center of orbiting object} \)
\(E = \text{Total Energy of an orbit} \)

Orbital Mechanics

\[e = \sqrt{1 - \frac{b^2}{a^2}} \]
\[T = 2\pi\sqrt{\frac{a^3}{\mu}} = 2\pi\sqrt{\frac{a^3}{GM}} \]
\[F = \frac{GMm}{r^2} \]

\(e = \text{eccentricity} \)
\(b = \text{semi-minor axis} \)
\(a = \text{semi-major axis} \)
\(T = \text{orbital period} \)
\(\mu = \text{gravitational parameter} \)
\(F = \text{force of gravity between two bodies} \)
\(G = \text{universal gravitation constant} \)
\(M = \text{mass of central body} \)
\(m = \text{mass of orbiting object} \)
\(r = \text{distance between center of two objects} \)

Bernoulli’s Law

\[\left(P_s + \frac{\rho v^2}{2} \right)_1 = \left(P_s + \frac{\rho v^2}{2} \right)_2 \]

\(P_s = \text{static pressure} \)
\(v = \text{velocity} \)
\(\rho = \text{density} \)

Atmosphere Parameters

\[T = 15.04 - 0.00649h \]
\[p = 101.29 \frac{(T + 273.1)}{288.08}^{6.256} \]
\[\rho = \frac{p}{0.2869(T + 273.1)} \]

\(T = \text{temperature} \)
\(h = \text{height} \)
\(p = \text{pressure} \)
\(\rho = \text{density} \)